Downscaling Global Weather Forecast Outputs Using ANN for Flood Prediction
نویسندگان
چکیده
Downscaling global weather prediction model outputs to individual locations or local scales is a common practice for operational weather forecast in order to correct the model outputs at subgrid scales. This paper presents an empirical-statistical downscaling method for precipitation prediction which uses a feed-forward multilayer perceptron MLP neural network. The MLP architecture was optimized by considering physical bases that determine the circulation of atmospheric variables. Downscaled precipitation was then used as inputs to the super tank model runoff model for flood prediction. The case study was conducted for the Thu Bon River Basin, located in Central Vietnam. Study results showed that the precipitation predicted by MLP outperformed that directly obtained from model outputs or downscaled using multiple linear regression. Consequently, flood forecast based on the downscaled precipitation was very encouraging. It has demonstrated as a robust technology, simple to implement, reliable, and universal application for flood prediction through the combination of downscaling model and super tank model.
منابع مشابه
A synoptic-climatology approach to increase the skill of numerical weather predictions over Iran
Simplifications used in regional climate models decrease the accuracy of the regional climate models. To overcome this deficiency, usually a statistical technique of MOS is used to improve the skill of gridded outputs of the Numerical Weather Prediction (NWP) models. In this paper, an experimental synoptic-climatology based method has been used to calibrate, and decrease amount of errors in GFS...
متن کاملThe Floodrelief Internet-based Flood Forecasting Decision Support System
For operational flood forecasting and operational decision-makers, ready access to current and forecasted meteorological conditions is essential for initiating flood response measures and issuing flood warnings. Effective flood forecasting systems must provide reliable, accurate and timely forecasts for a range of catchments; from small rapidly responding urban areas, to large, more slowly resp...
متن کاملDownscaling of global climate models for flood frequency analysis: where are we now?
The issues of downscaling the results from global climate models (GCMs) to a scale relevant for hydrological impact studies are examined. GCM outputs, typically at a spatial resolution of around 3° latitude and 4° longitude, are currently not considered reliable at time scales shorter than 1 month. Continuous rainfall-runoff modelling for flood regime assessment requires input at the daily or e...
متن کاملNumerical Weather Prediction (NWP) and hybrid ARMA/ANN model to predict global radiation
We propose in this paper an original technique to predict global radiation using a hybrid ARMA/ANN model and data issued from a numerical weather prediction model (ALADIN). We particularly look at the Multi-Layer Perceptron. After optimizing our architecture with ALADIN and endogenous data previously made stationary and using an innovative pre-input layer selection method, we combined it to an ...
متن کاملExamination of Flood Runoff Reproductivity for Different Rainfall Sources in Central Vietnam
This paper presents the combination of different precipitation data sets and the distributed hydrological model, in order to examine the flood runoff reproductivity of scattered observation catchments. The precipitation data sets were obtained from observation using rain-gages, satellite based estimate (TRMM), and numerical weather prediction model (NWP), then were coupled with the super tank m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Applied Mathematics
دوره 2011 شماره
صفحات -
تاریخ انتشار 2011